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This presentation will describe the effort at Sandia National

Laboratories Albuquerque with emphasis on the methodologies and

techniques being used to generate strict hexahedral finite element
meshes from a solid model. We utilize the functionality of the modeler

to decompose the solid into a set of non-intersecting meshable finite

element primitives. The description of the decomposition is exported,

via a Boundary Representation format, to the meshing program which

uses the information for complete finite element model specification.

Particular features of the program will be discussed in some detail

along with future plans for development which includes automation of

the decomposition using artificial intelligence techniques.
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Automatic Nesh Generation and Optimization
from the Solids Hodel Dec•base

SA/_D85-2822C, CAD/CAH 031

Patrick F. Ch•vez *

A proposed system co Kenerece finite element models directly from
the solids model dec•base is presented. This system includes euco-

macic error analysis vlch adaptive griddln8 for equillbraclon of the
error estimator in use. The complete specification of the finite

element model including boundary conditions and material identifiers

is produced co • neutral output file. An illustrative example depict-

ing the state of implementation of the proposed system is contained
vichin. Current research is also briefly described.

Introduction

The advancing technology of computing hardvare and software is yell

represented by the current Computer Aided Design (CAD) systems employ-
ing solids modeling. These solids modeling systems, under development
by both universities and industry, have the obvious benefit for the

realistic visualization of three-dimensional (3-D) objects. The most
important benefits of solids modeling, however, do not lie in the

solid model itself, but in the subsequent applications which utilize

the valid and unambiguous geometric lnfor_acion available. In ocher
vords, the advantage of solids modeling is not as a stand •lone appli-

cation but as • means of creating • geometrical database to unify a

number of applications. Indeed, users and vendors currently seem to
be concentrating their efforts ec integrating the solids model daCe-

base In the areas of Finite Element Hodeling (FE/4) end Numerical
Control (NC) Programming. Solids modeling does appear Co have the

potential for unifying the design, engineering, and manufacturing

areas of industry.

AC Sandia National Laboratories • unified geometric database is

expected Co reduce design time and yield added reliability and
optimization of the designed systems. A Joint effort becveen the

Engineering Sciences and the Computer Aided Design Departments has

been defined and is being pursued co integrate the Computer Aided

Engineering (CAE) ecclvlcles of the Engineering Sciences Department

into the automated design and manufacturing process. The primary

vehicle for this ef£orc is the utilization of improved model genera-

tion capabilities vlch emphasis on advanced geometric de£inicion and

automatic mesh generation for FF_. In particular, the utilization of

the CAD geometrical dace and hence the elimination of the error prone
reentry of such dace is considered essential.

*Hember of Technical Staff, CAD Technology Division 2814,
$andis National Laboratories, Albuquerque, NH, 8718S.
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This paper describes the effort underway at Sandia for
integration of FF_ Hesh generation utilizing PADL-2 [BROW82]. the
Constructive Solid Geometry (CSC) system produced at the University of
Rochester. Xn general, because of the couerclally available and

locally developed finite element analysls co_es in use at Sandia, a
requirement for the use of hexahedral elements in 3-D FEM exists.
This, coupled wlth the large number of nonlinear finite element

analyses performed, prohibits us from considering the automatic
tetrahedralization work [CAVE85] developed at General Motors Research
Labs or the sodified-octree work [YER_84] performed at Rensselaer
Polytechnic Institute. The finite element mesh generation philosophy
we are pursuing is divided into Cvo primary phases; 1) initial mesh
installation utilizing the available CAD geometric data base and 2)
mesh optimization including mesh improvements based on geometrical
aspects of the initial mesh and automatic error analysis coupled with
node grading techniques to obtain uniformly reliable answers
throughout the domain of analysis.

The following sections of this paper describe in some detail the
relevant topics including 1) solids modeling, 2) application inter-
face, 3) initial mesh generation, 4) mesh improvements, 5) and error
analysis and adaptive grldding. An illustrative problem depicting the

state of implementation of these topics is included.

Solids Modeling - A Geometrical Basis for Applications

The classical geometrical CAD database is the so-called
"wireframe m format. To define wireframe, we introduce the notion of
an edge. For us, how an edge is actually represented within so_e
computer database is unimportant. Only the idea that an edge results
from the intersection of two distinct surfaces matters. An edge is
one-dimensional in a parametric sense. That i_, although any point

(x,y,z) on an edge is in Euclidean 3-space it can be derived through
a system of equations depending on only one independent parameter of
the form

x - X(s) y - Y(s) z - Z(s).

Here Y, Y, and Z are functions of the independent parameter s which is

bounded in the closed interval [So,Sl]. A vtreframe representation
then models a solid by simplistically s_ecifying certain edges of the

solid. Typically, those edges defined for a given solid correspond to
the bounding edges of the domain being considered. Particular entity
specification, referred to as instancing, is accomplished through a
choice of a particular type of edge (say a line or circular segment)
with a rigid motion and any other necessary parameters (say curvature)
to complete the definition.

New geometrical modeling technologies are becoming popular. The
_o most popular technologies are CSC and Boundary Representation (B-
Rep). CSG systems define solids as Boolean operations (union, dif-
ference, intersection) of simpler primitive solids (blocks, spheres,
wedges, cones) instanced by size and location. The B-Rep, on the
other hand, is a heirarchical extension of the wireframe format. In
the B-Rep, solids are described as a collection of instanced (by type,
size, and location) faces, each of which in turn are composed by a
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number of edges. Explicit mathematical descriptions of both the faces

and edges are usually available. The user interface for the CSC and
B-Rep systems appear to be unifying wlth each other borrowing from the
others successes. Primitive instancing, once strictly a tool of the

CSC modeler, is found in several B-Rep modelers. Similarly, a sweep-

ink formulation of edges to create faces and the 8weepin_ of faces to
form volumes have begun to appear in some CSG formulation_.

We are, of course, interested in utilizing an unambiguous and

valid description of a solid. The adjectives "unambiguous" and
"valid" are similar to the terms "one-to-one" and "onto" as applied to

invertible functions. When we say an unambiguous solid representation

we imply that for a given representation it should correspond to one

and only one solid. We do not have strict one-to-oneness since there
is no unique representation for a given solid, but only a unique solid

for every representation. Indeed, in any of the currently available

geometrical modeling systems, there is no unique representation for a
solid. There are as many definitions of a solid as there are users.
As for the term "valid', we imply that for any representation we

derive, it describes a solid although it need not be realizable from a

manufacturing point of view.

It is easy to imagine that wit, frame representations are neither

unambiguous nor valid. Indeed, there are a myriad number of counter-
examples testlfylng to thls. On the other hand, both CSG and B-Rep

systems have the ability to produce unambiguous and valid descrip-
tions. Our york in automatic finite element analysis has been based

on the unambiguous and valid geometric description available within
the C$C modeler PADL-2. The choice of PADL-2 has been more • matter

of convenience, since the source code and expertise are available at

$andia, than a matter of preference of CSG over B-Rep. In fact, it
nay be argued that the B-Rep facilitates certain applications, for

example FEH and NC programming, that are primarily surface oriented.

For our implementation of the mesh generation we use the B-Rep,

as supplied through a conversion routine available in PADL-2. These

conversion routines are generally well understood and details of the
PADL-2 implementation can be found in [HARTS1]. Our development thus

is considered Feneric in the sense that any solid modeler capable of

ultimately delivering a B-Rep, independent of its own internal repre-
sentation, would be able to utilize the capabilities we are develop-

ing.

We have realized the benefits of using a valid and unambiguous
solid model as neither the geometry nor the topology has to be sup-

plemented. For vireframe applications it is quite typical that either
additional topology or geometry has to be supplied before applications
are undertaken.

Application Interface - The Link Between Geometry and Applications

The idea for using arbitrary solid modelers in conjunction with

verious applications is kno_nn under the broader category of
"application interface'. An application interface has been likened to

a "software bus" enabling applications to communicate directly to
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8ollds modelers for the purpose of interrogating or modifying the
• olld model. To date no standard •ppllc•tion interface exists for the

available •ollds modelers although •fforts [CAMI86] to thls and have
been underway for ••me time. Still. some solids modelers make

available to ••me •xt•nt the modeling operations requlr•dby loc•!ly

deTeloped •ppllc•tlons. Application interfaces can be thought of •s

part of the •ollds modeler which make the Intern•Is of the modeler
transparent to the •ppllc•tlon.

We have been able to use • number of the available routines

within PADL-2 to facilitate the interface to the finic• element mesh

generator. These include routines for identifying and utilizing the
Ks•metric entities within the representation. For •xample, routines

pertaining to the st•rage management •truccur•, the rigid motion

facility, and the computational geometry package have been used to
discretize the body for mesh generation. Other utilities necessary

for linking our application to PADL-2 have had to be defined and
developed. These include routines that format the B-Rap available in

PADL-2 for •xport to applications and the corresponding routines to

read the representation into the mesh generator. The mesh generator
also requires contiguous lists of edges and faces, called loops, which

PADL-2 does not require. These have been developed. Redundant edges

and faces •re either necessary or add to the robustness of • solids
modeler, but •re detrimental to mesh generation. Algorithms to

identify and eliminate redundant faces and edges have been

implemented. Finally, although PADL-2 contains routines usable to
discretize edges, none existed to discretize surfaces.

The above development has allowed the mesh generator to directly

create finite element models from • solids description while g_utrmn-

teeing that •11 nodes defined for the mesh either lie in the body or
are exactly on the surface. This group of routines are necessary

within another solids modeler for our implementation of the finite
tlement mesh Bener•tor.

Mesh Generation - An Application for Solids Modeling

In this section the philosophy for generating hexahedral finite
element meshes from • solids model database is presented. We proceed

by briefly describing one technique for generating hexahedral meshes
that is representative of the classical methods used. The method we
are pursuing for mesh generation is an extension of these ideas im-

bedded in new technologies, namely solids modeling and feature recog-
nition.

A hexahedral mesh can be constructed through a coordinate trans-

formation in conjunction with higher order approximating functions.
More specifically, the geometry of the body is constructed using

hexahedral subregions each having six well defined faces and twelve
edges. The description of each hexahedron requires the coordinates o£

eight corner points and one interior point of each edge for • total of
twenty points. During the construction of 8 particular hexahedron,

faces which are coincident with previously defined faces are identi-
fied. Thus, coincident nodes on coincident faces are assigned the
same node number, Finally, • consistent number of divisions along



three "mutually orthosonal" directions for each hexahedron i•
•pacified.

A mesh of hexahedral element• can then be installed in each

hexahedral region in the following manner. The t_enty points given on
each hexaheIral subregion are considered the images of the unlt cube
S, where S - [(r,s,t):O__r,•,c_l], vle maps given by x - X(r,•,C), y -
Y(r,s,t), and z - Z(r,s,c). Here the usually polynomial functions X,
Y, and Z ere of total degree three In each variable. The unlt square
i• then •ubdlvlded Into the specified number of divisions and the grid
• o formed is transformed via the above maps to the physical domain.
If the interior points defined along the edges of the hexahedral are
placed closer to a corner point, a higher density of elements is
obtained in that portion of the subregion.

The mapping technique described above, usually referred to as an
Isoparametrlc mapping, necessarily matches the body at only the twenty
interpolation points defined. A different mapping technique has been
utilized In our york. Our a_pping technique is related to the
transfinite mapping york of Htber at. el. [HA_Eal,HABE82], in that a
non-denumerable set of points on the surface of the body can exactly
be matched. This mapping is derived by utilizing the par_matrtc
representation of the surfaces available in PADL-2 to locate the mesh
points on tvo "opposite" faces. The interior points of the mesh are
then generated through s lofting o£ the meshes on these faces. For

the simple subreglons implemeted to date, these interior points ere
guaranteed to lie interior to the subregion. As more geometrically
complicated subregtons are added, validity of the location of the
interior points rill be checked through point classification, a capa-
billcly of the solids modeler PADL-2.

In the discussion of a classical hexahedron mesh generator, ve
.described the geometric definition of the body as an assemblage of
.l_rge hexahedra. This definition of a solid is overly restrictive.
This construction is unnatural end inefficient when using general
solids modelers. Even for systems explicitly designed for this

purpose, this construction can be overly time consuming for ell but
the simplest cases.

For our york, no such res_rlc_ions on the geomett 7 creation is
assumed. The full power of the solids modeler is utilized. Our
philosophy for subregion definition is that all the capabilities of
the solids modeler are used Co decompose the body into a set of
regions within each of which • hexahedral finite element mesh can be
installed. We term these subregions "finite element primitives'.
That is, the solid model is decomposed using the primitivesand
Boolean operations of the solids modeler into a set of finite element
primitives. The resulting set of finite element primitives need not
coincide with the geometric primitives of the solids modeler. The
finite element prlmiCves Co be supported include all the geometric
primitives plus all the topolologtcally equivalent entities. For
example, any volume defined by one surface, topologically equivalent
to a sphere, viii be able to be meshed.



Allovln8 more seneral finite element primitives either
necessitates the de£1nlclon of hey mapping techniques or a decomposl-
tlon of each of the finite element primitives Into a collection of
hexahedra. Thls last alternative Is easily accomplished. Flgure 1
shove the decomposltlon of the standard geometric primitives. This
decomposition of the finite element primitives vlll be automatic In
the solid modeler and transparent to the user.

The mesh seneraclon Is only automatic in each finite element
primitive. Presently human interaction Is required for the primitive
deco=posltlon. Work is beginning in the area of feature recognition,
as applied to recognizing the finite element primitives, to automate
thls process.

.',

Figure 1. Decomposition of the Standard Geometric
Primitives into Hexahedron.

Mesh Improvements - Assur£n S Geometrically Good Meshes

In the previous discussion o£ the mesh generator ve did noc
enumerate the characteristics of m "good" mesh. We do so nov. Some
characteristics of a good mesh are 1) gradually changing element
sizes, 2) gradually changing element shapes, and 3) as nearly reccan-
Bular (even cubical) elements as possible. These characteristics have
i=porcanc ncunerical consequences. For example, the third condition
assures us in practice of m yell defined (one-Co-one and onto) coot-
dlnace Cransformaclon during the sclffness matrix foraulaclon. In
sddlclon, all the above characcerlstlcs attempt co malncaln the condl-
Clon n,,mbers of the stiffness matrices generated for Cvo nearby ale-
mencs Co be similar.
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Our approach to generating good meshes is an extension of the
ideas incoporated in the _o-dimensional (2-D) mesh generator QKESH
[3ON£74]. Only the necessary details of these developments rill be
given in this section. A more complete description of the 2-D im-
plementation can be found in the QMESH documentation.

In our mesh generator, like QMESH, the initial mesh is evaluated
and improved through a series of processors vorking in tandem. The
processors have the capabilities to automatically reposition nodes,
delete elements, and rearrange the topology in an attempt to improve
the element geometry. The mesh improvements, as ve now discuss, are
only concerned rich the geometrical aspects of the mesh. The suffi-
ciency of the mesh with regard to accuracy is discussed in the next
section of this paper. The general concepts of the algorithms for
node smoothing, topology restructuring, and element deletion are nov
described.

The node repositioner, or smoother, consists of attempting to
have the nodes equidistant and the elements having equal volumes.
Requiring the nodes to be equidistant is tantamount to requiring thaC
every node is at the average location of all its neighbors. Symboli-
cally we have

1
c=.y,=)- :(::xi, -Yi':h)

where n is the number of neighboring points each rich coordinate (_ui:
Yi' z_). This formula is the one applied in the smooching code
in a slightly altered fashion. The expression is rewritten as

i  (xi.xo) ' X(yi.y0) '  (zi.z0))(x,y,z) - (Xo,Yo,Z O) + _(

or more succinctly .

". 1

, (x,y,z) - (Xo,Yo,Z O) + _:l i.

Here (Xn.Yn.Zn) and (x,y.z) are respectiv_ly
position_ 6f -the node being moved and VL - _1 i
movement vector.

the old and updated
is the "Laplacian"

Only a related form of the volume equilibra=lon has been
considered Co date. Instead of requiring the volumes for all elements
to be the same, we impose that each of the areas of the faces on-all
the elements are equal. This has been proposed to more fully utilize
the capabilities already developed in QHESH. This requirement is
represented in the formula

v^-: vi
Aif+Aib

where VA is the "Area-Pull" movement vector (corresponding to VI in

the node-equldlstrlbutlon) applied co the node in quesclon. The A_ f
and A_ _ refer to the areas of the face "in front" and "in back*'of
the nad3. Agsin, more complete description of the formulation in the
two-dimensional setting can be found in [JONE74]. The Laplacian and
Area-Pull moment vector for 8 node are incorporated through a convex
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combination of the two. That is the moment vector for a given node is
taken as

v - avA ÷ (1-a)v L

rich ac[O,1] a user select•hie parameter.

The next capability is the restructuring of the element topology,
i.e., the element connectivity. By this we mean the process of eras-
ing an interface plane and drawing it differently to improve the
geometrical shape of the neighboring elements to the plane. To assess
the element shapes, three element evaluator functions referring co the
angle condition, the aspect ratio, and the product of these cvo have
been defined. These definitions are extensions Co chose developed by
Jones for QHESH.

The operation of the restructuring process is then the following:
the condition numbers for all the elements are evaluated and a list of
the twenty-five worst (largest) is saved. The processor attempts to
improve the worst element in the mesh. If no improvement is made in
any of the first ten worst elements, the processor quits. If a re-
structure is accomplished, the list of worst elements is updated and
the process is continued so long as a restructure Is performed among
the ten worst elements of the mesh.

The final processor contained is the element deleter. This
processor attempts to improve the mesh by deleting elements. Element
deletion is similar in nature co the restructuring processor. This
processor sweeps through the mesh to make a list of the five worst
"rhombic" elements. The measure of how rhombic an element, termed the
R-number, is defined as the ratio of the length of the shorter diago-

•nal to the length of the longer diagonal. If the R-number of an
element is less than tan(V/2), where V is normally forty-five degrees,
the element is placed in the candidate list for deletion in ascending
order. The more rhombic an element is the smaller the R-number. The

tolerance parameter tan(V/2) is the R-n,,=ber of a parallelogram with
opposite angles of V and is not simply a measure of how sharp an
element is. The progra: then starting with the worst (smallest) R-
number, attempts to eliminate the element. As soon as an element is
deleted, control returns to the calling program.

The sequence Chat the processors operate on can effect the out-
come o£ the mesh. A general method for specifying the sequence of the
processors has been implemented. The entire sequence is lceracively
performed until convergence (no more node smoothing, element restruc-
turing, or element deletion) is attained.

The full capability of the mesh improvement has not been imple-
mented to date. Only those capabilities corresponding Co each of the

lofting planes generated in the primitives are acted on. Ve can show
that for certain limited cases this is a partial implementation of the
entire algorithm for m true 3-D mesh improvement. Ue have observed
that the primary processor functioning is the smoother, attributing to
the initial quality of the meshes generated.
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Error £nalysis _and £daptlTe Oriddin$ o Generating ¢omlmcationally
Opt 1=us Meshes

The eoplcs of error analysis and ad4pclve grlddlng have attracted
considerable accenclon. For example, Ic is well known theoreclcally

chac inserting degrees of freedom inca the finite elfment method can
yield more accurate results. In practice, iC has been verified chat
often the error can be reduced when the number of degrees of freedom

are increased. In general, there are two ways of decreasing the error
by increasing the number of degrees of freedom in the finite element
space. The first method, usually referred Co as the "p-method",
involves increasing the degree of the polynomial used over each
element while leaving the total number of elements in the domain
fixed. This refinement, as usually implemented, has no effect on the

approximation of the geometry and hence the initial mesh should be
developed to include all the important geometrical aspects.

The second method of increasing the accuracy of the finite ele-
ment method is termed the "h-method'. In the h-method, the degree of
the approximating functions over each element is maintained while the
portion of the domain spanned by each element is decreased. In ocher
words, additional elements (and thus nodal points) are placed in the

region. Again, in practical applications of the h-method, no im-
provement of the geometrical model is attained. The theoretical
aspects of the h-method are probably more developed than chose
perCainlng Co the p-method.

The difficulty with bach the above approaches is thac extensive
modifications are required for the finite element analysis codes in

use today Co cake advantage of these developments. A third alterna-
tive for adaptive gridding is possible. Errors in numerical methods
are pointwise dependent. That is, errors in an analysis usually vary

from one element co another. One reasonable goal co strive for is a
Uniformly reliable answer with the same error associated with every
element. Thus, if elements are concentrated in the area where errors

are large while decreasing the number of elements where errors are
small, we can hope co produce such a result. In effect, we are crying
to automate the technical expertise applied by computational stress

analysts in achieving reasonable results.

The methodology currently being pursued is the latter approach
primarily because of the large investment in conventional FEB tech-
niques noc involving the h- or p-methods of refinement. IC nay be
quite some time before software is readily available for applying
general h- or p-methods especially for the non-linear problems of
interest ac Sandia. The question now arises: HOW do we introduce the

adaptive grading techniques in our calculations? To answer this we
look ec the composite pares of the problem. They are error evaluation
and node distribution.

The problem of finite element error evaluation has been studied
extensively. Sophisticated theoretical work has been done by Babuska
and P,helnboldC [BABU78a, BABU78b, BABU80]; K. Miller and R. Miller

[MILLSIe]; K. Miller [MILLalb]; end Babuska and A. Miller [BABUal] on
error evaluation. To paraphrase their work without extensive techni-

cal details, an estimate of the local error in an energy norm aca
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given node is derived by considering the surrounding elements to that
node. Here the energy norm for • function f is defined as

IIflIEcD) - _ DlVfl2dv.

The indicated integration is carried ouc over the domain covered by
the neighboring elements of the node of interest and is not•ted _y D.

It is assumed thac the finite element solution, denoted by uh, to the
desired partial di££erencial equation (PDE) is available. A model
problem, perhaps mimicking the actual PDE being solved, with boundary

data corresponding to uh is then solved on D and denoted by v. It is
then reasonable to assume that the quantity JJu_-vJJ_. D-
approximates the local energy error JJu h - uJJ_tD_ wheY• u _ _he
exact (and usually unavailable) solution. VarYbug refinements and
extensions to this idea are the topics of the references cited.

The error indicator we are currently experimenting with is
different from the one presented •boys. Our error indicator is
simpler to evaluate and attempts to estimate the maximum point-vise
error in an element rather than a local energy error. Briefly, under
conditions which are usually satisfied, it can be shown chac in the
maximum norm the finite element solution is the optimal solution
available from the span of the basis functions. Thus

Ilu-uhllL. _ Cmin IIu-XIIL.
X _Sh

where II * II L denotes the maximum norm and Sh denotes the finite
element subspace depend_n_ on the choice of the discrecizacion h and
the approximating polynomials S used. Then, on an element k spproxi-
nation theory yields

• Ilu'uhllz_ (K)

Here D2u denotes the generic

I_ IIv milL- (K)
IID2ulIL- (K).

second derivative while h k is the
diameter of the element. In the case of linear elements we use the

first inequality replacing Vu by Vu_. _or quadr_tic elements the
second inequality can be used replacing D u with D _. The maximum
norm is currently estimated aC the quadrature points or the elements.

This error indicator is conservative for problems with smooch
solutions. Ic does noc Cake into account the full order of the

polynomial approximation for such problems. Ic is known thac for

problems wich2smooch solutions, the error using linear elements would
be of order h and noc3h. Simlla_ly for quadratic elements the error
would be of order h and noc h . This error indicator may be more
suitable for non-smooch problems such as in shock calculations.
Again, the primary advantage of the proposed error indicator is its
computability and iC is a poinCvise estimate.

Ve nov consider the problem of hey co distribute the nodes to
equilibrate the error indicator and obtain • uniformly reliable
solution throughout the domain of anyelysia. This problem is easily
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addressed with the development of the Keometrical •moothin s as dis-
cussed eerlier. As noted, the movement vector as considered in the

Area-Pull and Laplacian •moocher i• siren a•

It

8•

v - aVA÷(I-a)VL.

is reasonable co expect that the new node movement vector defined

v - avAeA + (l-a)vL%

where e A and • I represent the error• 8ssocieced with the Area-Pull
and the Laplacran movement vector respectively, would cluster the

elements where errors ere large. For example, e A could be defined as
the maximum error computed for the element corresponding to v 4 while

e L could be the average of the errors associated with ell the eIement•
• urroundlng I i. Overall, the node distribution for adaptive grading
X• taken as an error weighting of the seometrical node •mooching.

An Example - Current Capabilities

As an illustration of the procedure for cresting • finite element

mesh end performing automatic error analysis and adaptive grlddlng, we
consider m relaclvely slmple but realistic problem. The problem
involves an L-bracket vlch a cylindrical hole in the bottom slab. The

part is constructed in the PADL-2 language through the union of cvo

properly Instanced blocks and the difference of a properly instanced
cylinder. The solid is decomposed Into six finite element primitives.
The solids model of the decomposed L-bracket is shown in F_sure 2.

The four primitives surrounding the hole were created by first

defining a coordinate system with respect to the axis of the hole. A
properly instanced wedge with its apex parallel to the holes axis was

defined. Finally. four intersections of the bracket with The wedge
after appropriate rotmcions of the wedge about the holes axis yielded

the indicated finite element primitives. The two remaining finite
element primitives were obtained by intersecting appropriately
instanced blocks with the L-bracket.

The B-Rep of the decomposed bracket was transferred to the mesh

generator via several of the routines imbedded in the application

interface. For analysis purposes, the part is assumed co be o£ alu=i-
nu= construction with a load applied co the right front vertical edge.

Discretization date supplied via the user interface in The mesh gene-
rator resulted in the mesh indicated in Figure 3. Appropriate mate-

rial indicators and boundary condition flags were specified, again

within the F_ user interface, before formatting the model into a

neutral format for analysis. Automatic translation of the neutral
formatted finite element model into SAP IV [BATH7&] format for a

linear elastic static analysis was accomplished. Typical results

shoving the minimum principal stress contours is shown in Figure 3.

Figure 4 shows the results of the automatic error analysis.
Areas of large error ere indicated es a high density of error contours

and corresponds to locations of high stress. This is intuitively
correct since the error measure is related co the calculation of the
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straln$ and hence proportional to the stresses. Finally, Figure 5
shows the adapted mesh and the analysis results on that mesh. In
general the error Indlcaeor has aqulllbrated to reasonable values and
the answer ts considered to be uniformly reliable In the domain of
interest for the number of elements used.

Conclusions

We have presented in some detail the theory and development
behind a three-dimensional hexahedral finite element mesh generator
working directly from a solids model database. Zn conjunction with
the mesh generator are co-developments in automatic error analysis and
adaptive grading to produce uniformly reliable analyses.

Research and development pertaining to the overall system is
continuing. Development of the mesh improvement schemes and inclusion
of more topologically complex finite element primitives ts proceeding.
The mesh generation phase is only automatic in each finite element
primitive. Full automation Is impossible without automating the
finite element primitive decomposition. Research is underway in the
general area of feature recognition as applied to the process of
primitive decomposition. In addition, York is continuing in the areas
of automatic error analysis and acLapClve grading. This york is
prlmarily seen to remain in the area of adaptive grading because of
the predominant nature of the commercially available finite element
analysis codes.

f

T

_X L.4bslll •tll_ • _ IDle

Figure 2. The Solid Model of
the Primitive

Decomposition

Figure 3. The Minimum Principal
Stress Contours on the
Hexahedral Nesh
Generated.
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Fisure 4. Error Contours from the
Automatic Error Analysis

Figure 5. The Minimum Principal
Stress Contours After

Adaptive Gridding
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